HY12-15

PUSH BUTTON SWITCH SPECIFICATION

WRITER/DATE	CHECK/DATE	APPROVED/DATE
JIANSHENG 2016.05.06	SIQI WANG 2016.05.06	ZIPING LI 2016.05.06

1. Manufacturer, Product Name, Type, Parameter, Standard

1. 1 Manufacturer: KEDU ELECTRIC C0,. LTD.
1.2 Product Name: Push button switch
1.3 Type: HY12-15
1.4 Parameter: $16(10) \mathrm{A} / 250 \mathrm{~V} \sim$ (EN61058)
1.5 Standard: EN61058
2. 6 Certificate: TUV

2. Product performance

2. 1 Operating environment condition:
2.1.1 Environment temperature: $-5 \sim 40^{\circ} \mathrm{C}$, average temperature in $24 \mathrm{~h} \leqslant 35^{\circ} \mathrm{C}$
2.1.2 Elevation: $\leqslant 2000 \mathrm{~m}$
2.1.3 RH(relative air humidity): Clean air, $\mathrm{RH} \leqslant 50 \%$ at $40^{\circ} \mathrm{C}$ environment temperature, RH can be higher at lower temperature, eg. 90% at $+20^{\circ} \mathrm{C}$.
2.1.4 Class of pollution: 2
2.2 Performance and characteristic

Standard	EN61058
Rated voltage	$250 \mathrm{~V} \sim$
Rated current	$16(10) \mathrm{A}$
Electrical endurance	5 E 4
Mechanical endurance	10 E 4
Contact resistance	Original value $\leqslant 10 \mathrm{~m} \Omega$
Terminal type	$\mathrm{Tab} 6.3 \times 0.8$
IP degree	IP 65
Rated environment temperature	$\mathrm{T} 120 / 55$ (switch main body can reach to $120^{\circ} \mathrm{C}$, controls parts limit to $55^{\circ} \mathrm{C}$)

2.3 Appearance: No crack or deformation on the case, label is legible and correct.

2. 4 Dielectric property

2.4.1 Humidity processing: RH in humidity cabinet is between
91% and 95%, temperature is at an value in $20^{\circ} \mathrm{C} \sim 30^{\circ} \mathrm{C}$ (t) and can fluctuate $\pm 1^{\circ} \mathrm{C}$. Keep the temperature of the humidity cabinet at a value of $t \sim(t \pm 4){ }^{\circ} \mathrm{C}$ before putting the samples into. After 96 h the switch has no damage. Then do insulation resistance test and dielectric test.
2. 4. 2 Insulation resistance: Put 500VDC on below parts of the switch and measure
it after 1min:
2.4.2.1 Between different poles $\geqslant 10 \mathrm{M} \Omega$;
2.4.2.2 Between all connected electrification parts and shell $\geqslant 10 \mathrm{M} \Omega$;
2.4.2.3 Between electrification parts and button $\geqslant 10 \mathrm{M} \Omega$;
2. 4. 3 Dielectric strength: At a sine wave voltage with 50 Hz or 60 Hz , the voltage is tested from $0 V$ up equably to below value in 5 s and with no flashover or breakdown after keeping 5s.
2.4.3.1 Between different poles, 1500V;
2.4.3.2 Between contacts on each poles, 1500 V ;
2.4.3.3 Between electrification parts and shell, 3000 V 。
2. 5 Heat test: Environment temperature is $(25 \pm 10){ }^{\circ} \mathrm{C}$, switch is normally assembled and connected with $2.5 \mathrm{~mm}^{2} 1 \mathrm{~m}$ flexible wires, temperature rise of the terminals $\leqslant 45 \mathrm{~K}$ when switch under $16 \times 1.06=16.96 \mathrm{~A}$ and 250 VAC .
2. 6 Endurance test: Environment temperature is (25 ± 10) ${ }^{\circ} \mathrm{C}$, normal electrical condition, 0N/0FF under 16A/250VAC, ON 1 s and 0 FF 3 s for each cycle, 15 times $/ \mathrm{min}$, 5E4. Test steps as below:

1. Speed up: under the condition of rated voltage, 6 times of electric load current and power factor $\geqslant 0.9$ to test closing ability of the contact. Under the condition of rated voltage, resistive load current and PF (power factor) \geqslant 0.9 to test contact opening ability of the contact. Operating 100cycles at $80 \mathrm{~mm} / \mathrm{s}$ in single load circuit.
2. Low speed: With same electrical conditions as above point. Operating 100cycles at $20 \mathrm{~mm} / \mathrm{s}$ in single load circuit.
3. Speed up: With same electrical conditions as above point. Operating 50000 cycles at temperature $0-55^{\circ} \mathrm{C}$ and speed $80 \mathrm{~mm} / \mathrm{s}$.
Locked-rotor test: 6 times of electric load current and PF 0.6, operating 50 cycles。

The samples doing above testing should be working correctly during the testing and after testing.
2. 7 Heating qualified (TE2): After endurance test, keep the environment temperature at $(25 \pm 10)^{\circ} \mathrm{C}$, switch is normally assembled and connected with $2.5 \mathrm{~mm}^{2}$ 1 m flexible wires, temperature rise of the terminals $\leqslant 55 \mathrm{~K}$ when switch under $16 \mathrm{~A} / 250 \mathrm{VAC}$ for 1 h .
2.8 Insulation qualified (TE3): The sample is without humidity processing before testing. Switch at a sine wave voltage with 50 Hz or 60 Hz , the voltage is tested from 0 V up equably to below value in 5 s and with no flashover or breakdown after keeping 5 s.
2.8.1 Between different poles, 1125 V ;
2.8.2 Between contacts on each poles, 1125V;

2．8．3 Between electrification parts and shell， 2250 V 。

2． 9 Mechanical strength：
2．9．1 Enough mechanical strength：Strike the weakness of the switch 3 times by a spring impacter with（ 0.5 ± 0.04 ）Nm impact energy，switch has no fracture after testing．

2．9．2 Insertion and extraction force：put an axial force steadily，insertion force is 96 N max．and extraction force is 88 N max．for single pin．The pins do not move obviously or be damaged．

2．9．3 IP degree：IP65 actuating side，IP40 terminal side

3．Inspection and method
3．1 Inspection project
3．1．1 Appearance
3．1．2 Dielectric strength
3．2 Sampling plan
Sampling plan according to GB 2828 《Inspection by counting sampling procedures and sampling tables》

No．	Project	Plan	AQL
1	Appearance	II	2.5
2	Dielectric strength	S－3	0.65

3．3 Inspect condition：Unless otherwise specified，temperature should be between $20^{\circ} \mathrm{C} \sim 30^{\circ} \mathrm{C}$ ，switch can be assembled at the test equipment at every position．
3． 4 Method
3．4．1 Appearance inspection：Visual check，accord with item 2．3．
3．4．2 Dielectric strength：Check accord with item 2．4．3．

4．Label：

4． 1 Logo：

4．1．2 Type
4.1.3 Certificate: TUV
4.1.4 Rated current Ie
4.1.5 Rated voltage Ue
4. 2 S Store condition

Carton and goods cannot be subjected to wind and rain attacking during shipping or storage. $\mathrm{RH} \leqslant 95 \%$.
5. Outline Drawing

